GLP-1 improves neuropathology after murine cold lesion brain trauma

نویسندگان

  • Brian DellaValle
  • Casper Hempel
  • Flemming Fryd Johansen
  • Jørgen Anders Lindholm Kurtzhals
چکیده

OBJECTIVES In this study, we address a gap in knowledge regarding the therapeutic potential of acute treatment with a glucagon-like peptide-1 (GLP-1) receptor agonist after severe brain trauma. Moreover, it remains still unknown whether GLP-1 treatment activates the protective, anti-neurodegenerative cAMP response element binding protein (CREB) pathway in the brain in vivo, and whether activation leads to observable increases in protective, anti-neurodegenerative proteins. Finally, we report the first use of a highly sensitive in vivo imaging agent to assess reactive species generation after brain trauma. METHODS Severe trauma was induced with a stereotactic cryo-lesion in mice and thereafter treated with vehicle, liraglutide, or liraglutide + GLP-1 receptor antagonist. A therapeutic window was established and lesion size post-trauma was determined. Reactive oxygen species were visualized in vivo and quantified directly ex vivo. Hematological analysis was performed over time. Necrotic and apoptotic tone and neuroinflammation was assessed over time. CREB activation and CREB-regulated cytoprotective proteins were assessed over time. RESULTS Lira treatment reduced lesion size by ∼50% through the GLP-1 receptor. Reactive species generation was reduced by ∼40-60%. Necrotic and apoptotic tone maintained similar to sham in diseased animals with Lira treatment. Phosphorylation of CREB was markedly increased by Lira in a GLP-1 receptor-dependent manner. CREB-regulated cytoprotective and anti-neurodegenerative proteins increased with Lira-driven CREB activation. INTERPRETATION These results show that Lira has potent effects after experimental trauma in mice and thus should be considered a candidate for critical care intervention post-injury. Moreover, activation of CREB in the brain by Lira - described for the first time to be dependent on pathology - should be investigated further as a potential mechanism of action in neurodegenerative disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oral Administration of Sitagliptin Activates CREB and Is Neuroprotective in Murine Model of Brain Trauma

Introduction: Traumatic brain injury is a major cause of mortality and morbidity. We have previously shown that the injectable glucagon-like peptide-1 (GLP-1) analog, liraglutide, significantly improved the outcome in mice after severe traumatic brain injury (TBI). In this study we are interested in the effects of oral treatment of a different class of GLP-1 based therapy, dipeptidyl peptidase ...

متن کامل

Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation.

Recent clinical studies indicate that traumatic brain injury (TBI) produces chronic and progressive neurodegenerative changes leading to late neurologic dysfunction, but little is known about the mechanisms underlying such changes. Microglial-mediated neuroinflammationis an important secondary injury mechanism after TBI. In human studies, microglial activation has been found to persist for many...

متن کامل

Interleukin-1 beta is required for the early evolution of reactive astrogliosis following CNS lesion.

The CNS response to injury is characterized by the rapid activation of astrocytes in a process known as astrogliosis. The function of reactive astrocytes is controversial, in that both beneficial and detrimental properties are postulated. Identification of the molecules involved in regulating astrogliosis is an important step towards understanding astrocyte functions and establishing suitable c...

متن کامل

A detrimental role for nitric oxide synthase-2 in the pathology resulting from acute cerebral injury.

Nitric oxide (NO) synthesized from the inducible isoform of nitric oxide synthase (NOS-2) has been suggested to play both beneficial and deleterious roles in various neuropathologies. To define the role of nitric oxide in traumatic brain injury, we subjected male mice lacking a functional NOS-2 gene (NOS-2-/-) and their wild-type littermates (NOS-2+/+) to mild or severe aseptic cryogenic cerebr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014